Multi-View Random Fields and Street-Side Imagery
نویسندگان
چکیده
In this paper, we present a method that introduces graphical models into a multi-view scenario. We focus on a popular Random Fields concept that many researchers use to describe context in a single image and introduce a new model that can transfer context directly between matched images – Multi-View Random Fields. This method allows sharing not only visual information between images, but also contextual information for the purpose of object recognition and classification. We describe the mathematical model for this method as well as present the application for a domain of street-side image datasets. In this application, the detection of façade elements has improved by up to 20% using Multi-view Random Fields.
منابع مشابه
Automatic Discovery and Geotagging of Objects from Street View Imagery
Many applications such as autonomous navigation, urban planning and asset monitoring, rely on the availability of accurate information about objects and their geolocations. In this paper we propose to automatically detect and compute the GPS coordinates of recurring stationary objects of interest using street view imagery. Our processing pipeline relies on two fully convolutional neural network...
متن کاملMulti-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
Recognizing arbitrary multi-character text in unconstrained natural photographs is a hard problem. In this paper, we address an equally hard sub-problem in this domain viz. recognizing arbitrary multi-digit numbers from Street View imagery. Traditional approaches to solve this problem typically separate out the localization, segmentation, and recognition steps. In this paper we propose a unifie...
متن کاملEstimating city-level travel patterns using street imagery: a case study of using Google Street View in Britain
Background: Street imagery is a promising big data source providing current and historical images in more than 100 countries. Previous studies used this data to audit built environment features. Here we explore a novel application, using Google Street View (GSV) to predict travel patterns at the city level. Methods: We sampled 34 cities in Great Britain. In each city, we accessed GSV images fro...
متن کاملFaçade Segmentation in a Multi-view Scenario
We examine a new method of façade segmentation in a multi-view scenario. A set of overlapping, thus redundant street-side images exists and each image shows multiple buildings. A semantic segmentation identifies primary areas in the image such as sky, ground, vegetation, and façade. Subsequently, repeated patterns are detected in image segments previous labeled as “façade areas” and are applied...
متن کاملSemantic Segmentation of Street-Side Images
In this paper we propose a method for semantic segmentation of street-side images. Segmentation and classification is pixel based and results in classes of building facades, sections of sky, road and other areas present in general images taken in the urban environment. A segmentation method is suggested and detected segments are classified. Final classification is reinforced using context infor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of WSCG
دوره 20 شماره
صفحات -
تاریخ انتشار 2012